
George Coote

Question 1

(i) First part bookwork.

(ii) Let Tx = ⟨fγ(x)⟩γ∈Γ. If T is bounded, then there exists M such that supγ∈Γ |fγ(x)| ≤
M ∥x∥ for each x ∈ X. In particular |fγ(x)| ≤ M for each x ∈ X. So {fγ : γ ∈ Γ} ⊆ X∗

and further ∥fγ∥∞ ≤ M for each γ ∈ Γ, so this set is bounded.

Take α = supγ∈Γ ∥fγ∥∞. It is clear that:

∥Tx∥ = sup
γ∈Γ

|fγ(x)| ≤ α ∥x∥

Now note that for each ε > 0 there exists γ ∈ Γ such that α − ε/2 < ∥fγ∥∞ ≤ α. Then
there exists ∥eγ∥ = 1 in X such that α ≥ |fγeγ | > α−ε. So (α−ε) ∥eγ∥ < ∥Teγ∥ ≤ α ∥eγ∥.
Since ε was arbitrary we have ∥T∥ = α.

Conversely, if {fγ : γ ∈ Γ} is bounded and we have ∥Tx∥ = supγ∈Γ |fγ(x)| ≤ α ∥x∥ as in
the previous case. So T is bounded.

(iii) Pick Γ = X and take ⟨fx⟩x∈X to be the support functional at x. Then {fx : x ∈ X} ⊆
X∗ is bounded and so Ty = ⟨fx(y)⟩n∈N is continuous. For each y ∈ X we have |fx(y)| ≤
∥y∥ with equality if y = x. Then ∥Ty∥ = supx∈X |fx(y)| = ∥y∥. So T is an isometric
embedding.

If X is separable, take Γ = N, a dense subset ⟨en⟩n∈N and the corresponding support
functionals ⟨fn⟩n∈N. We have ∥Tx∥ = supn∈N |fn(x)|. We have |fn(en)| ≤ ∥en∥ for each
en, while |fn(x)| ≤ ∥x∥ for all x ∈ X. So we have ∥Ten∥ = ∥en∥ for each n. Since ⟨en⟩n∈N
is dense, we have ∥Tx∥ = ∥x∥ for all x ∈ X by continuity.

If X = Y ∗ for separable Y , take ⟨xn⟩n∈N a dense subset of BY and consider the bounded
subset {x̂n : n ∈ N} ⊆ Y ∗∗ = X∗. Then define Tf = ⟨f(xn)⟩n∈N. For each f ∈ X and
ε > 0 there exists y ∈ SY such that ∥f∥∞ − ε/2 < |f(y)| ≤ ∥f∥∞. In particular, by
approximating y there exists some n such that ∥f∥∞ − ε < |f(xn)| ≤ ∥f∥∞. It follows
that ∥Tf∥ = supn∈N |f(xn)| = ∥f∥∞.

(iv) Take T ∈ B(Y, ℓ∞(Γ)). Then Ty = ⟨fγ(y)⟩γ∈Γ for each y ∈ Y . By part ii, each
fγ : Y → C is in Y ∗, and since ∥T∥ = supγ∈Γ ∥fγ∥∞, we have ∥fγ∥∞ ≤ ∥T∥ for each

γ ∈ Γ. Applying Hahn–Banach to each fγ , there exists f̃γ : Z → C such that ∥f̃γ∥ ≤ ∥T∥.
Then T̃ = ⟨f̃γ⟩γ∈Γ works and satisfies ∥T̃∥ ≤ ∥T∥.

(v) If : If the condition holds, then there exists an isometric embedding T : X → ℓ∞(Γ)
for a set Γ. Then there exists a bounded linear map P : ℓ∞(Γ) → X such that ∥P∥ ≤ λ
and P ◦ T is the identity on X. Now let Y be a subspace of a normed space Z and let
S : Y → X be a bounded linear map. Then T ◦S : Y → ℓ∞(Γ) is bounded. We have shown

that ℓ∞(Γ) is 1–injective, so there exists T̃ ◦ S : Z → ℓ∞(Γ) such that T̃ ◦ S restricts to

T ◦ S and
∥∥∥T̃ ◦ S

∥∥∥ ≤ ∥T ◦ S∥. Then P ◦ T̃ ◦ S restricts to P ◦ (T ◦ S) = S. Finally we

have, since T is an isometry:∥∥∥P ◦ T̃ ◦ S
∥∥∥ ≤

∥∥∥T̃ ◦ S
∥∥∥ ≤ λ ∥T ◦ S∥ = λ ∥S∥

So X is λ–injective.
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Only if : Suppose that X is λ–injective and let T : X → Z be an isometric embedding.
Then take Y = T (x). We can take the bounded inverse T−1 : T (X) → X. Then

there exists T̃−1 ∈ B(Z,X) such that T̃−1 restricts to T−1 with
∥∥∥T̃−1

∥∥∥ ≤ λ
∥∥T−1

∥∥.
Take P = T̃−1. Then P ◦ T is the identity since P restricts to T−1 on Y . Further,∥∥∥T̃−1

∥∥∥ ≤ λ
∥∥T−1

∥∥ = λ.

1 Question 2

Part a

Bookwork up to last part, which is also partly bookwork.

Suppose {fn : n ∈ N} ⊆ BX∗ separates the points of X. Let σ be the initial topology
induced by the {fn : n ∈ N} ⊆ BX∗ and let K be a w–compact set. It is bookwork to
prove that σ is metrizable. Then the inclusion (K,w) → (K,σ) is a continuous bijection
from a compact space to a Hausdorff space, and hence (K,w) = (K,σ). That is, (K,w)
is metrizable.

Part b

Part bi

Let ⟨xn⟩n∈N be a sequence in a Banach space X that is weakly convergent to x. Then
{xn : n ∈ N} ∪ {x} is weakly compact, and hence is norm bounded by the bookwork in
part a. We deduce that any weakly convergent sequence is norm bounded.

Since ⟨fn⟩n∈N converges weakly to 0, it is a norm–bounded sequence, say ∥fn∥∞ ≤ M .
Since point evaluations are bounded linear functionals, we also have that fn → 0 pointwise.
Then applying the dominated convergence theorem we have ∥fn∥1 → 0.

Part bii

Let α = infy∈C ∥y∥. For each n ∈ N, pick xn ∈ C such that α < ∥xn∥ < α + 1
n . Let

Y = span {xn : n ∈ N}. Since Y is a closed subspace of a reflexive space, it is reflexive.
That is, (BY , w) is compact.

Y is also separable as the closed linear span of a countable set. Take a dense countable
subset ⟨en⟩n∈N. Then the countable subset ⟨ên⟩n∈N ⊆ BY ∗∗ separates the points of Y ∗.
So the topology on any weakly compact subset of Y ∗ is metrizable. In particular, (BY ∗ , w)
is metrizable. Since Y is reflexive we have (BY ∗ , w) = (BY ∗ , w∗). So (BY ∗ , w) is compact
and metrizable, and hence must be weakly separable.

Note that if S = {zn : n ∈ N} is w∗–dense in BY ∗ , it must separate the points of Y :
if f, g ∈ BY ∗ had f(zn) = g(zn) for each n, we would obtain that f = g from the
continuity of f and g. It follows that every weakly compact subset of Y is metrizable, in
particular (BY , w) is metrizable, hence sequentially compact. (since we already know it
to be compact)

By construction, ⟨xn⟩n∈N is norm (hence weakly) bounded and hence is contained in some
ballMBY ∩C. This set is a w–closed subset of BY , and so is metrizable and compact, hence
sequentially compact. So some subsequence ⟨xnj ⟩j∈N converges weakly to x ∈ MBY ∩C.
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Then:
∥x∥ ≤ lim inf

n→∞
∥xn∥ = α

But since α = infy∈C ∥y∥, we must therefore have ∥x∥ = infy∈C ∥y∥.

Part biii

Let K be a w–compact subset of ℓ∞. Then the coordinate functionals sending ⟨xn⟩n∈N to
xn separate the points of ℓ∞. So K is metrizable. Then K is w–separable, with countable
dense subset {zn : n ∈ N}. Then spanK = span {zn : n ∈ N}w = span {zn : n ∈ N} by
Mazur. So spanK is norm–separable, and hence so is K as a metric subspace.

Question 3

Part a

Example sheets

Part b

Bookwork

Part c

Bookwork: prove that if X is separable then (BX∗ , w∗) is metrizable.

SinceX∗ is separable, (BX∗∗ , w∗) is metrizable and hence sequentially compact by Banach–
Alaoglu. A norm–bounded sequence ⟨xn⟩n∈N in X remains norm (hence w∗) bounded in

X∗∗. So there exists ϕ ∈ X∗∗ such that x̂n
w∗
−−→ ϕ. That is, ϕ(f) = limn→∞ x̂n(f) =

limn→∞ f(xn) for each f ∈ X∗.

If X is not reflexive, there exists ϕ ∈ BX∗∗ \ BX . Since (BX∗∗ , w∗) is metrizable and
closed, it is sequentially closed. Since BX is w∗–dense in BX∗∗ by Goldstine, there exists

a sequence ⟨xn⟩n∈N in BX (hence norm bonuded) with x̂n
w∗
−−→ ϕ. If some subsequence

of ⟨xn⟩n∈N, say ⟨xnj ⟩j∈N converged weakly to x in X, we would have x̂nj

w∗
−−→ x̂ in X∗∗,

(since the embedding is w–to–w∗ continuous) hence x̂ = ϕ, contrary to our assumption
that ϕ ̸∈ X. So ⟨xn⟩n∈N is our desired sequence.

Question 4

Part a

Bookwork.

Part b

Bookwork up to exp(x) = · · · . WLOG take A to be commutative, by taking the maximal
commutative subalgebra containing x. Then define exp : U → C by f(z) =

∑∞
n=0

zn

n! ,

a holomorphic function that is the uniform limit of the polynomials PN (z) =
∑N

n=0
zn

n! .
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Then we have:

exp(x) := Θx(f)

= Θx( lim
n→∞

PN )

= lim
N→∞

Θx(PN )

= lim
N→∞

N∑
n=0

xn

n!

where we have used that Θx is continuous and sends polynomials to the analogy in the
Banach algebra. So we get exp(x) =

∑∞
n=0

xn

n! .

Bookwork proving form of spectrum.

From the previous part we have σA(f(x)) = {f(λ) : λ ∈ σA(x)} ⊆ V since σA(x) ⊆ U and
f(U) ⊆ V . Consider the HFCs Θx : O(V ) → A and Θf(x) : O(V ) → A. We aim to show
that g 7→ Θx(g ◦ f) and g 7→ Θf(x)(g) both satisfy the conditions for the HFC and so must
be equal.

They are certainly both homomorphisms and g 7→ Θx(g ◦ f) is continuous as the compo-
sition of continuous functions. Further, both maps are unital since Θx(1 ◦ f) = Θx(1) =
1 = Θf(x)(1). Finally we can see that Θx(id ◦ f) = Θx(f) = f(x) = Θf(x)(id). Hence we
deduce that Θx(•◦f) = Θf(x) by the uniqueness part of the HFC. So for each holomorphic
g we have Θx(g ◦ f) = (g ◦ f)(x) = Θf(x)(g) = g(f(x)).

Let U = B∥x∥+ε(0) with ε picked so that ∥x∥+ε < 1 and let V be an open subset containing
U . Define a logarithm log on 1−B∥x∥+ε(0) (note that this is still a positive distance from
the origin) and let f : U → C be defined by f(z) = log(1 − z). Define g : f(U) → C
to be the exponential g(z) = exp(z). Then we have (g ◦ f)(x) = (1U − id)(x) = 1 − x =
g(f(x)) = exp(f(x)). Letting y = f(x) gives the result exp(y) = 1− x.

Question 5

Bookwork up to Invariant Subspace Problem.

Let λ1 and λ2 be distinct points in σ(T ) and fix disjoint open neighborhoods U1, U2 thereof
inK. Consider the projections P1 = P (U1) and P2 = P (U2). P1 is certainly non–zero since
P (U) is non–zero for open U . We have P (U1)P (U2) = P (U1 ∩U2) = 0, which means that
P1 ̸= I. P1 clearly commutes with every projection as a projection itself, hence we have
TP1 = P1T . Then V = ker(I − P1) = im(P1) is a non–trivial invariant subspace.
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