
George Coote

Question 1

Bookwork and example sheets.

Question 2

[This solution is based off notes taken during Dr. Zsak’s example class]

(b) Since xn
w−→ 0 we have:

0 ∈ conv {xn : n ∈ N}w = conv {xn : n ∈ N}

by Mazur. So there exists p1 < q1 and tp1 , . . . , tq1 such that
∑q1

i=p1
ti = 1 such that∥∥∥∑q1

i=p1
tixi

∥∥∥ < 1. Then since 0 ∈ conv {xn : n ≥ q1}
w

= conv {xn : n ≥ q1}, and so on,

we can continue this construction to find p1 < q1 < p2 < q2 < . . . such that
∑qn

i=pn
= 1

and
∥∥∥∑qn

i=pn
tixi

∥∥∥ < 1/n. Then
∑qn

i=pn
tixi → 0 as desired.

(c) Since X∗ is separable, BX∗∗ is w∗–metrizable, hence BX∗∗ is w∗–sequentially compact.
Since ⟨xn⟩n∈N is norm bounded in X, it is norm bounded (hence w∗–bounded) in X∗∗.
So there exists some subsequence ⟨ŷn⟩n∈N converging w∗ to ϕ ∈ X∗∗. That is, for f ∈ X∗

we have ŷn(f) = f(yn) → ϕ(f). So ⟨f(yn)⟩n∈N is Cauchy for each f ∈ X∗.

Let un be a convex block of the ⟨yn⟩n∈N, say un =
∑qn

i=pn
tiyi. Then for f ∈ X∗ we

have:

|f(un − yn)| ≤
qn∑

i=pn

ti(f(yi)− f(yn))

≤ sup
pn≤i≤qn

|f(yi)− f(yn)|

Since pn, qn → ∞, we have |f(un−yn)| → 0 for each f ∈ X∗. That is, un−yn
w−→ 0.

(d) Let ⟨zn⟩n∈N be a sequence in BZ with zn
w−→ 0. Pick ⟨wn⟩n∈N ⊆ (4/3)BX such that

q(wn) = zn. Passing to a subsequence, we can assume that ⟨wn⟩n∈N w∗–converges to
some ψ ∈ X∗∗. Take a convex block ⟨un⟩n∈N of ⟨zn⟩n∈N such that un → 0. Take the
corresponding convex block of ⟨wn⟩n∈N, ⟨xn⟩n∈N so that q(xn) = un for each n ∈ N.

Then by the previous part, we have xn − wn
w−→ 0. We can now conclude, since we have

∥xn − wn∥ < 3 and ∥q(xn − wn)− zn∥ = ∥q(xn)∥ → 0.

Question 3

Mostly bookwork. Let ϕ ∈ L∗
p. Then there exists g ∈ Lq such that:

ϕ(f) =

ˆ
fgdµ

Then we have |fng| ≤ |fg|. Since |fg| is integrable by Holder’s inequality and fng → 0
pointwise almost everywhere, we have:ˆ

fngdµ→ 0

by DCT, and hence ϕ(fn) → 0. So fn
w−→ 0.
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Question 4

First, any unital ∗–homomorphism f : A→ B between C∗–algebras is continuous: for each
x ∈ A we have σB(f(x)) ⊆ σA(x). (since if x is invertible in A, then f(X) is invertible in
B) Then ∥f(x)∥2 = ∥(f(x))∗(f(x))∥ = rB(f(x

∗x)) ≤ rA(x
∗x) = ∥x∗x∥ = ∥x∥2, where we

have used that if A is normal then rA(x) = ∥x∥.

Let A be the maximal commutative C∗ subalgebra generated by T . Then σA(T ) = σ(T ).
Then there is a unital ∗–isomorphism S : ΦA → σ(T ) sending ϕ ∈ ΦA to ϕ(T ). Then
the map f 7→ f ◦ S is a unital ∗–isomorphism C(σ(T )) → C(ΦA). Then the inverse
Gelfand map G−1 : C(ΦA) → A is a unital ∗–isomorphism. Finally defining a map
Γ : C(σ(T )) → A by Γ(f) = G−1(f ◦ S) we have a unital ∗–isomorphism. First, we have
for ϕ ∈ ΦA: (G ◦ Γ)(id)(ϕ) = Sϕ = ϕ(T ) = T̂ (ϕ). So (G ◦ Γ)(id) = T̂ = G(T ). Since G
is an isomorphism it follows that T = Γ(id). Now for λ ∈ K, we have (G ◦ Γ)(λ)(ϕ) =

G−1(λ)(ϕ) = λ = λ̂I(ϕ) = (G(λI))ϕ. So Γ(λ) = λI.

For uniqueness, note that the conditions Γ(id) = T and Γ(λ) = λ together imply that
for any polynomial p ∈ C[X,Y ] we have Γ(p(z, z)) = p(T, T ∗). Since the polynomials in
z, z are dense in C(σ(T )), we have that Γ is uniquely determined on a dense subset of
C(σ(T )), hence uniquely determined.

Now suppose that σ(T ) = K1∪K2 is disconnected. Let U1 and U2 be open neighborhoods
of K1 and K2 with positive distance between them. Define f(z) = 1 on U1 and f(z) = 0
on U2. Then f is continuous since it is continuous on both connected components. We
have Γ(f)2 = Γ(f2) = Γ(f), so Γ(f) is a projection, and commutes with A since Γ(f) ∈ A.
We lastly need to verify that Γ(f) is non–trivial. We do this by noting that since Γ is
a ∗–isomorphism onto A, it is injective. Since f is not identically 0 or the 1, we have
Γ(f) ̸∈ {0, I}. Hence Γ(f) is a non–trivial projection commuting with T and we are
done.

Question 5

(1) =⇒ (2): Since T ∗∗ extends T we have T ∗∗x ∈ TBX ⊆ TBX for each x ∈ X.
Hence:

BX ⊆ (T ∗∗)−1(TBX) (*)

We have that TBX is w–compact. So TBX is w∗–compact, hence w∗–closed. So (T ∗∗)−1(TBX)
is w∗–closed. Taking closures on both sides of the inclusion (∗) and then applying T ∗∗

gives T ∗∗(BX∗∗) ⊆ TBX ⊆ Y . So T ∗∗(X∗∗) =
⋃∞

r=1 T
∗∗(rBX∗∗) ⊆ Y . So we have proved

(2).

(2) =⇒ (3): Suppose that T ∗∗(X∗∗) ⊆ Y . Then for each g ∈ X∗∗, we have g ◦ T ∗∗ =
T ∗∗g ∈ Y = (Y ∗, w∗)∗. So by the universal property, T ∗ is w∗–to–w continuous.

(3) =⇒ (4): Suppose that T ∗ : Y ∗ → X∗ is w∗–to–w continuous. Since BX∗ is w∗–
compact by Banach–Alaoglu, we have that T ∗(BX∗) is w–compact, in particular w–closed.
So we immediately get that T ∗ is weakly compact.

(4) =⇒ (1): Suppose that T ∗ is compact. Using (1) =⇒ (4), we have that T ∗∗ is
compact. Since T ∗∗ extends T , we have T (BX) ⊆ T ∗∗(BX∗∗). BX∗∗ is w∗–compact by
Banach–Alaoglu. Since T ∗∗ : X∗∗ → Y ∗∗ is w∗–to–w continuous by (1) =⇒ (3), we have
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that T ∗∗(BX∗∗) is w–compact in Y ∗∗. So T (BX)
w
is a w–closed subset of the w–compact

set T ∗∗(BX∗∗), so is w–compact.

If X is reflexive, then X = X∗∗. Then T ∗∗(X) = T (X) ⊆ Y , so T is weakly compact.
If Y is reflexive, then so is Y ∗. Consider T ∗ : Y ∗ → X∗ and T ∗∗∗ : Y ∗ → X∗. Then
T ∗∗∗(Y ∗) = T ∗(Y ∗) ⊆ X∗, so T ∗ is weakly compact. So T is weakly compact.
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