
George Coote

Question 1

Pure bookwork.

Question 2

Bookwork omitted.

(d) Suppose C is weakly compact in X. Then it is w∗ compact, hence w∗ closed, in X∗∗.

Since C ⊆ C, it follows that C
w∗

⊆ C ⊆ X. (since the w∗ topology is smaller than the

norm topology, we obtain C
w∗

= C in this case)

Now suppose that C
w∗

⊆ X. Since C is bounded, we have that C ⊆ MBX for some

M > 0, so C
w∗

is a w∗–closed subset of the w∗–compact set MBX∗∗ , and hence is w∗–

compact itself. But C
w∗

⊆ X, so it is w–compact in X. (take the preimage under the
embedding X → X ⊆ X∗∗, which is a w–to–w∗ homomorphism) Note that since C is

norm closed and C is convex, C is also weakly closed, so C ⊆ C
w∗

. Since C is then a
weakly closed subset of a weakly compact set, it is itself weakly compact.

(e) That dual operators are w∗–to–w∗ continuous is on the example sheets. Note from

this that T ∗∗ extends T , since it sends x̂ to T̂ x. Suppose that T ∗∗(X∗∗) ⊆ Y . Then in
particular T ∗∗(BX∗∗) ⊆ Y , with T ∗∗(BX∗∗) being w∗–compact since BX∗∗ is. Since T ∗∗

extends T we have TBX ⊆ T ∗∗(BX∗∗). Then TBX
w∗

⊆ T ∗∗(BX∗∗) ⊆ Y . So TBX is
weakly compact.

Now suppose that TBX is weakly compact then TBX
w∗

⊆ Y . Recalling again that T ∗∗

extends T , we can see that (T ∗∗)−1(TBX
w∗

) ⊇ T−1(TBX
w∗

) ⊇ BX . Since TBX
w∗

is w∗–

closed, so is (T ∗∗)−1(TBX
w∗

). So by taking w∗–closures we have BX∗∗ ⊆ (T ∗∗)−1(TBX
w∗

).

So T ∗∗(BX∗∗) ⊆ TBX
w∗

⊆ Y . By scaling and taking unions we get T ∗∗(X∗∗) ⊆ Y .

Question 3

Bookwork omitted.

Suppose that there existed a Banach space X with X∗ = c0 or X∗ = L1[0, 1]. Then

BX∗ = conv(Ext(BX∗))
w∗

. It is therefore enough to show that the closed unit balls of c0
and L1[0, 1] have no extreme points.

Let x ∈ Bc0 . Since xn → 0, there exists n such that |xn| < 1/4. Then setting u =
x+ 1

4en ̸= x and v = x− 1
4en ̸= x we have 1

2u+ 1
2v = x, so x is not extreme.

Let f ∈ CL1[0,1]. Then there exists x such that
´ x
0 |f | =

´ 1
x |f | = 1/2. Then we have:

1

2
f1[0,x]︸ ︷︷ ︸

̸=f

+
1

2
f1[x,1]︸ ︷︷ ︸

̸=f

= f

since f cannot be identically zero on either [0, x] and [x, 1].

By Banach–Stone, C[0, 1] being isometrically isomorphic to C([0, 1]∪[2, 3]) is an equivalent
claim to [0, 1] being homeomorphic to [0, 1]∪ [2, 3]. But the former space is connected and
the latter disconnected, so they cannot be homeomorphic.
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Question 4

Pure bookwork.

Question 5

[I proved this in a different way to how Dr. Zsak proved in the revision class]

Consider:

p(x) = lim sup
n→∞

x1 + . . .+ xn
n

First note that:
x1 + . . .+ xn

n
≤ ∥x∥∞

for each n, so we have p(x) ≤ ∥x∥. Then, note that:

sup
k≥n

(x1 + y1) + . . .+ (xn + yn)

n
≤ sup

k≥n

x1 + . . .+ xn
n

+ sup
k≥n

y1 + . . .+ yn
n

Taking n → ∞ we get p(x + y) ≤ p(x) + p(y). Clearly we have positive homogeneity.
Extending the zero functional we obtain L such that Lx ≤ p(x) ≤ ∥x∥. Swapping x for
−x we have |Lx| ≤ ∥x∥. Hence L ∈ ℓ∗∞. We prove each property.

(b): Let x be a convergent sequence. Then we have:

Lx ≤ lim sup
n→∞

(
1

n

n∑
k=1

xk

)

≤ lim sup
n→∞

(
1

n

n∑
k=1

sup
j≥k

xj

)
= lim

n→∞
sup
j≥n

xj

= lim
n→∞

xn

Similarly:

Lx = −L(−x)

≥ − lim sup
n→∞

(
1

n

n∑
k=1

(−xk)

)

= lim inf
n→∞

(
1

n

n∑
k=1

xk

)

≥ lim inf
n→∞

(
1

n

n∑
k=1

inf
j≥k

xj

)
= lim

n→∞
inf
j≥n

xj

= lim
n→∞

xn

So we have Lx = limn→∞ xn.
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(a): We already have ∥L∥ ≤ 1, and since L(1, 1, . . . , 1) = limn→∞ 1 = 1 while ∥(1, 1, . . . , 1)∥∞ =
1, so ∥L∥ = 1.

(c): Let S be the shift operator on ℓ1. We have:

L(x− Sx) ≤ lim sup
n→∞

(x1 − x2) + (x2 − x3) + . . .+ (xn−1 − xn)

n
= lim sup

n→∞

x1 − xn
n

= 0

since x is bounded. Similarly:

L(x− Sx) = −L(Sx− x)

≥ − lim sup
n→∞

(x2 − x1) + (x3 − x2) + . . .+ (xn − xn−1)

n

= lim inf
n→∞

x1 − xn
n

= 0

So we have Lx = L(Sx), proving (a).
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